

# The New Frontier of Nanoengineering, an Atomic-Level Blueprints for Future Devices

Chiam Jun Keat

Department of Materials Science and Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

## Abstract

The field of nanoengineering is undergoing a paradigm shift, moving from top-down fabrication and self-assembly towards the precise, deterministic construction of functional structures atom-by-atom. This new frontier, often termed "atomic-level engineering" or "matter programming," is made possible by revolutionary advances in scanning probe microscopy, electron-beam manipulation, and computational materials design. This article comprehensively reviews the state-of-the-art techniques that constitute this new toolkit, including scanning tunnelling microscope (STM) atom manipulation, transmission electron microscope (TEM)-based atomic fabrication, and DNA origami as a scaffold for precise nanoparticle placement. We explore the application of these atomic blueprints in creating next-generation electronic devices, such as single-atom transistors and atomic-scale quantum bits (qubits), which promise to extend Moore's Law beyond the limits of conventional silicon technology. Furthermore, we discuss the emergence of bespoke molecular machines and sensors with functionalities encoded directly into their atomic architecture. The critical role of advanced computational methods—from density functional theory (DFT) to machine learning—in predicting properties, guiding synthesis, and automating the design process is emphasized. Despite the profound promise, significant challenges remain, including scalability, stability, and integration with existing macro-scale systems. This review concludes by outlining the future trajectory of atomic-level nanoengineering, arguing that the ability to construct matter from its fundamental building blocks will ultimately usher in a new era of materials science and device technology, with transformative implications for computing, energy, and medicine.

## Keywords

Atomic-Scale Fabrication, Scanning Probe Microscopy, Single-Atom Transistor, Quantum Computing, Molecular Machines, Dna Origami, Density Functional Theory

## 1. Introduction

For decades, the engine of technological progress has been the relentless miniaturization of electronic components, famously captured by Moore's Law. This journey into the nanoscale has been largely driven by top-down fabrication techniques, primarily photolithography, which sculpts bulk materials into ever-smaller features. However, as we approach the physical limits of silicon-based electronics—where quantum effects, atomic disorder, and heat dissipation become insurmountable barriers—a new paradigm is urgently needed. The next great leap forward lies not in making things smaller, but in building them smarter from the bottom up [1].

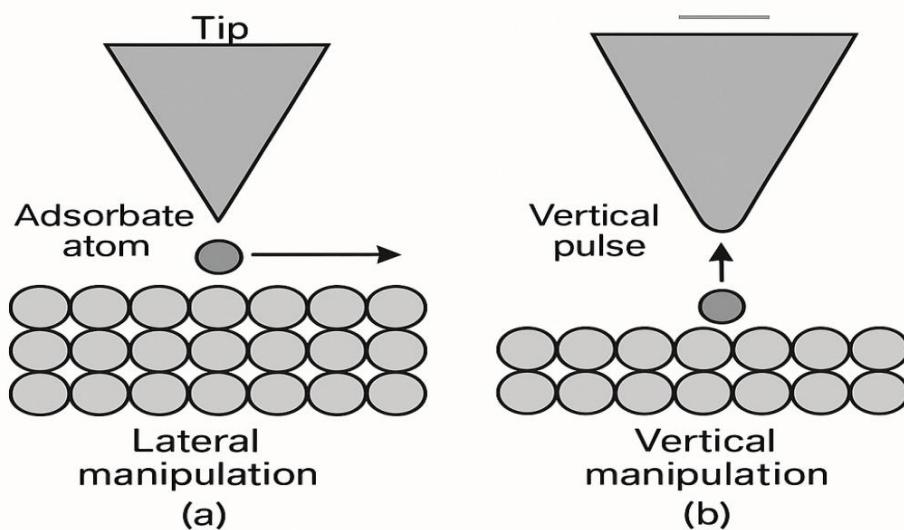
This heralds the arrival of a new frontier in nanoengineering: the construction of future devices using *atomic-level blueprints*. This paradigm is founded on the radical premise that we can position individual atoms and molecules with deterministic precision to create structures and machines whose properties are defined by their exact quantum-mechanical architecture. It is the ultimate form of materials design, transitioning from statistical ensembles of components to perfectly defined atomic arrangements [2].

The concept is not entirely new. In 1959, Richard Feynman presciently envisioned this potential in his legendary lecture, "There's Plenty of Room at the Bottom," challenging scientists to manipulate and control things on a small scale. For years, this remained a distant dream. The turning point came in 1989 when Don Eigler and Erhard Schweizer at IBM famously used a scanning tunnelling microscope (STM) to spell "IBM" with 35 xenon atoms on a nickel surface, demonstrating for the first time the controlled placement of individual atoms [3]. This was more than a stunt; it was a proof-of-principle for a new form of engineering.

Today, that nascent capability has matured into a sophisticated interdisciplinary field. This article will chart the progress and promise of this atomic-scale frontier. We will begin by detailing the core experimental techniques that form the engineer's toolbox, from advanced scanning probe methods to aberration-corrected transmission electron microscopy and bio-inspired assembly using DNA. Subsequently, we will explore the groundbreaking devices being built with these tools, focusing on ultra-scaled electronics and quantum information processors [4]. The indispensable role of computational design and machine learning in this endeavor will be thoroughly examined. Finally, we will confront the significant challenges that remain and project the future course of this transformative field, arguing that atomic-level blueprints are not merely an academic curiosity but the foundational technology for the next century of innovation.

## 2. The Atomic Engineer's Toolbox

The transition from observing atoms to manipulating them requires instruments of extraordinary sensitivity and control. The following techniques represent the cutting edge of this capability.


### 2.1 Scanning Probe Microscopy: The Quintessential Atomic Manipulator

The STM remains the most direct method for atomic manipulation. It operates by bringing an atomically sharp metallic tip to within a nanometer of a conductive surface. A bias voltage applied between the tip and the sample allows electrons to tunnel through the vacuum gap. The resulting tunnelling current is exponentially sensitive to the distance, enabling atomic-resolution imaging.

Beyond imaging, the STM tip can be used as a tool to move atoms. This is primarily achieved through two mechanisms:

- **Lateral Manipulation:** The tip is positioned directly over an adsorbate atom. By lowering the tip to increase the attractive force and then moving it laterally, the atom can be "dragged" across the surface (Figure 1). This was the method used in the iconic IBM demonstration.

- **Vertical Manipulation:** The tip is positioned over an atom, and a voltage pulse is applied. This can induce field evaporation, transferring the atom from the surface to the tip, or vice-versa, allowing for atomic-scale "pick and place" operations [5].



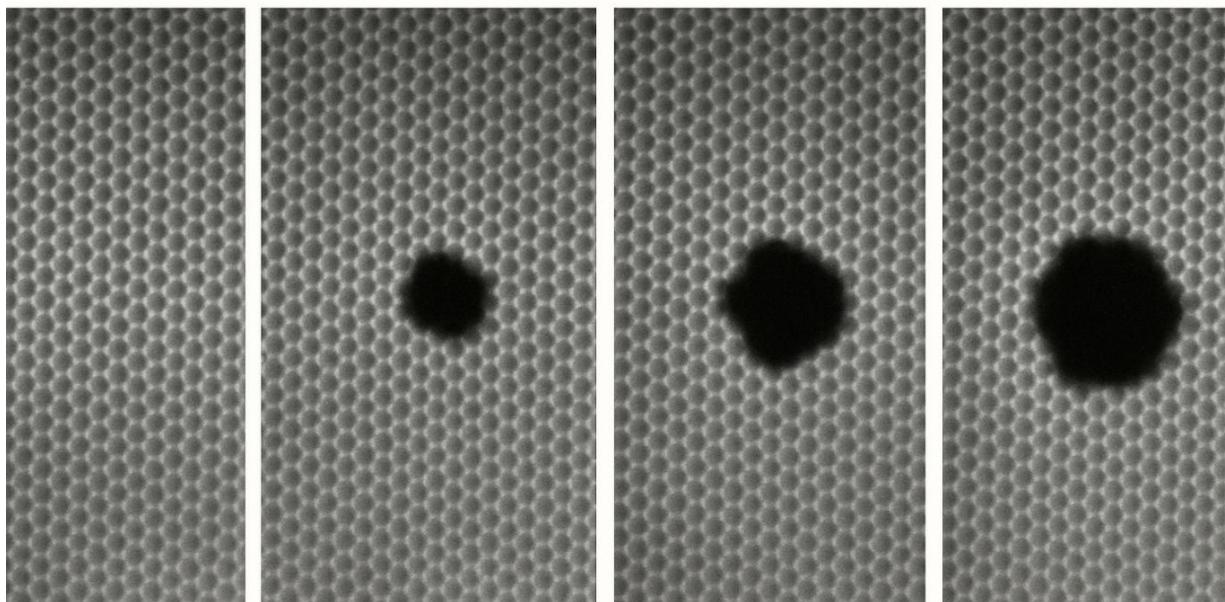
**Schematic representation of the two primary mechanisms for atom manipulation with an STM**

**Figure 1.** Modes of STM Atomic Manipulation

Figure 1 is a diagram illustrating how a scanning tunneling microscope (STM) transports individual atoms, showing two main methods. STM can achieve precise manipulation at the single-atom level by dragging atoms (lateral operation) or by transferring atoms between the probe and the surface using voltage pulses (vertical operation).

Recent advances have dramatically increased the speed and complexity of these operations. For example, researchers at the University of Alberta have developed a technique to remove single hydrogen atoms from a silicon surface with a clock-like precision of 98%, enabling the fabrication of complex atomic-scale devices like quantum dots. Furthermore, the use of atomic force microscopes (AFMs), which can operate on insulating surfaces, has expanded the range of manipulable materials. The stunning images of molecular structures and the ability to break and form specific chemical bonds using AFM tips functionalized with a single CO molecule have opened a new chapter in chemical synthesis.

### 2.2 Electron-Beam Manipulation in Transmission Electron Microscopes


The transmission electron microscope (TEM), a workhorse of nanomaterial characterization, has been repurposed as a fabrication tool. With the advent of aberration correction, TEMs can now achieve sub-ångström resolution, allowing scientists to not only image individual atoms but also to manipulate them using the focused electron beam [6].

The high-energy (60-300 keV) electrons in a TEM can impart enough momentum to knock atoms out of their lattice sites or, conversely, can stimulate the migration and incorporation of atoms into defects. This allows for:

- **Patterning 2D Materials:** Creating pores, gaps, and tailored edges in graphene and transition metal dichalcogenides (TMDs) by selectively sputtering atoms (Figure 2).

- **Healing Defects:** Using the electron beam to guide mobile atoms to fill vacancy defects, thereby "healing" the crystal lattice.
- **In-situ Chemical Reactions:** The beam can be used to break precursor molecules, depositing metal atoms with nanometer precision.

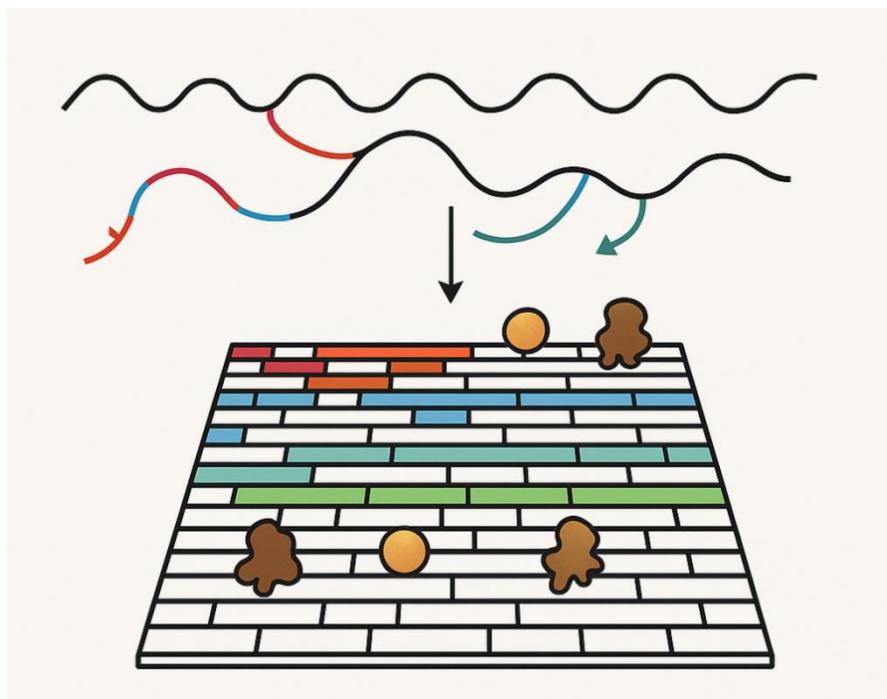
This approach is particularly powerful because it combines synthesis and characterization in a single instrument, providing real-time feedback on the fabrication process. For instance, researchers have used a STEM to create single-atom transistors in bilayer graphene by selectively knocking out individual carbon atoms to form a precise narrow channel [7].



**Figure 2.** TEM-based Engineering of a 2D Material

Figure 2 show Sequential TEM images demonstrating the progressive removal of atoms from a MoS<sub>2</sub> monolayer under a focused electron beam, illustrating direct-write atomic-scale patterning. This is a series of high-resolution transmission electron microscopy (TEM) images showing: the process of "drilling a hole" in a monolayer MoS<sub>2</sub> (molybdenum sulfide) using a focused electron beam. Using a focused electron beam in an electron microscope, atoms in a MoS<sub>2</sub> thin film can be "bombed" one by one, creating holes or patterns at the atomic scale.

### 2.3 DNA Origami and Bio-Inspired Assembly


For building larger and more complex three-dimensional nanostructures, particularly from materials that are not amenable to SPM or TEM manipulation, bio-inspired methods offer a powerful alternative. The most prominent of these is DNA origami [8].

DNA origami exploits the predictable base-pairing of DNA to fold a long, single-stranded "scaffold" into a predetermined shape using hundreds of short "staple" strands. This creates a rigid, nanoscale breadboard, typically 100 nm in diameter, onto which functional components like nanoparticles, proteins, or carbon nanotubes can be attached with ~5 nm precision (Figure 3).

The strengths of this approach are its parallel nature (trillions of identical structures can be synthesized simultaneously in a test tube) and its ability to create complex 3D shapes, such as boxes, tubes, and gears. These structures can act as:

- **Molecular Cages:** For targeted drug delivery.
- **Calibration Standards:** For microscopy.
- **Optical Devices:** By arranging metal nanoparticles into plasmonic antennas with tailored optical responses.
- **Templates for Nanoelectronics:** Precisely positioning nanowires and quantum dots for circuit assembly.

While the precision is not yet single-atom, it represents a meso-scale blueprinting capability that is complementary to the atomic-scale techniques. Recent work has even begun to integrate DNA origami with atomic-precision methods, using the DNA scaffold to position molecules for subsequent STM-based characterization and manipulation [9].



**Figure 3.** DNA Origami as a Nanoscale Breadboard

Figure 3 Illustration of the DNA origami process for the precise placement of functional elements on a nanoscale canvas. It illustrates how DNA origami precisely places functional molecules at the nanoscale. The whole diagram can be understood as: Using a long DNA thread as a "canvas" and many short DNA threads as "staples," it's folded into a 2D plate, and then "functional elements" such as gold nanoparticles and proteins are fixed in their designated positions. The self-assembly process of DNA origami is demonstrated: short DNA staple chains fold long scaffold chains into two-dimensional structures and attach gold nanoparticles or proteins at specific positions to achieve nanoscale precise arrangement of functional elements.

### 3. Building Blocks for Atomic-Scale Devices

The choice of material platform is critical for atomic-scale engineering. The following classes of materials have emerged as the most promising canvases for our atomic blueprints.

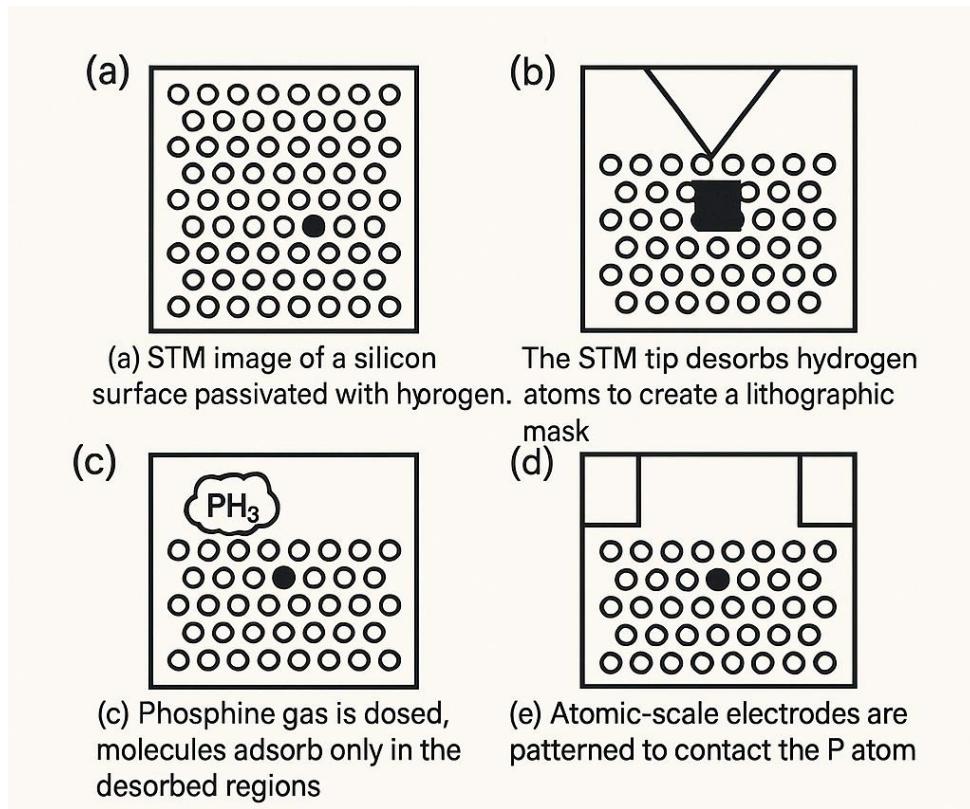
#### 3.1 Surfaces of Crystalline Substrates

Metallic (e.g., Cu(111), Au(111)) and semiconducting (e.g., Si(100), InAs(110)) single crystals provide atomically flat, clean, and well-understood surfaces. They are the traditional playground for STM studies. Adsorbates, from single metal atoms to organic molecules, can be arranged on these surfaces to create model quantum systems [10].

#### 3.2 Two-Dimensional Materials

The family of 2D materials, led by graphene, has been a game-changer. These atomically thin sheets are ideal because they lack dangling bonds on their surface, reducing unwanted interactions. Their extreme thinness means that every atom is an interface atom, making their electronic properties highly sensitive to atomic-scale modifications [11].

- **Graphene:** Its high conductivity and mechanical strength make it an excellent platform for electron transport devices. Creating nanogaps or doping it with single atoms can open a bandgap or induce magnetic moments.
- **Transition Metal Dichalcogenides (TMDs):** Materials like MoS<sub>2</sub> and WSe<sub>2</sub> are natural semiconductors, making them perfect for creating ultra-thin transistors. A single vacancy or the substitution of one atom can dramatically alter their optical and electronic properties [12].
- **Hexagonal Boron Nitride (h-BN):** An excellent insulator, used as a defect-host for single photon emitters or as a high-quality substrate for other 2D materials.


### 4. Realized Devices and Functional Structures

The ultimate test of any engineering paradigm is the functional device. Atomic-level engineering is already delivering on this front.

#### 4.1 The Single-Atom Transistor

The transistor is the fundamental unit of modern electronics. Pushing it to its ultimate limit, a team at the University of New South Wales demonstrated a working transistor where the active channel consists of a single phosphorus atom

embedded in silicon. The fabrication involved a multi-step process using a hydrogen-resist lithography technique with an STM (Figure 4). Precise phosphine gas dosing and subsequent annealing incorporated the P atom into the Si lattice. This device operates as a single-electron transistor, where the flow of current is controlled by the quantized energy levels of that single atom. While not yet a practical replacement for CMOS technology, it represents a fundamental milestone, proving that electronic switching is possible at the absolute atomic scale.



**Figure 4.** Fabrication of a Single-Atom Transistor

The key steps in the hydrogen-resist lithography process for creating a single-atom transistor in silicon. Figure 4 explains how to use hydrogen "resistive" photolithography to create a "single-atom transistor" in silicon. Using a scanning tunneling microscope (STM) as a "miniature paintbrush," patterns are written one by one on the silicon surface. Then, a phosphorus atom is seeded into the silicon lattice and connected with an electrode, thus turning it into a single-atom transistor. The demonstration showed that: first, hydrogen was used to seal the silicon surface, then STM was used to precisely remove local hydrogen,  $\text{PH}_3$  was selectively adsorbed, annealing was used to allow P atoms to enter the crystal lattice, and then nanoelectrodes were made to connect them—ultimately achieving the precise placement and contact of single-atom transistors in silicon.

#### 4.2 Atomic-Scale Quantum Bits (Qubits)

Quantum computing requires stable qubits. Atomic defects in solids, known as color centers, are leading candidates. The nitrogen-vacancy (NV) center in diamond—a nitrogen atom adjacent to a vacancy in the carbon lattice—is the most famous, used for quantum sensing and as a qubit [13].

The new frontier is the deterministic *creation* of these qubits. Using ion implantation with nanometer-scale masks or STM-based techniques, researchers are working to place single NV centers or similar defects (e.g., group-IV vacancies in diamond) at precise locations in a photonic crystal cavity to enhance their light-matter interaction. In silicon, individual phosphorus atoms have nuclear spins that can serve as exceptionally long-lived qubits. The ability to position them with nanometer precision is a critical step towards building a scalable quantum computer architecture.

#### 4.3 Molecular Machines and Synthetic Atoms

Inspired by biological machines like ATP synthase, chemists and nanoengineers are designing and building molecular-scale machines from scratch. Using supramolecular chemistry and surface-assisted synthesis, they create structures like molecular switches, rotors, and elevators that can perform mechanical work in response to light, electricity, or chemical stimuli.

A profound example is the creation of "synthetic atoms." By arranging a small number of atoms (e.g., 20-50) into a precise, stable cluster on a surface, researchers can create quantum corrals or artificial molecules with electronic properties that do not exist in nature. These designer quantum states can be tuned by changing the size, shape, and elemental composition of the cluster, opening a path to materials with custom-designed electronic band structures.

## 5. The Role of Computational Design and Machine Learning

The complexity of atomic-scale design is far beyond human intuition alone. Computational methods are not just supportive; they are co-pilots in the discovery and fabrication process.

**Density Functional Theory (DFT)** is the workhorse for predicting the atomic and electronic structure of materials. Before attempting a costly and complex experiment, a researcher can use DFT to:

- Predict the most stable configuration of an atomic assembly.
- Calculate its electronic band structure, density of states, and magnetic properties.
- Simulate STM images for direct comparison with experiment.
- Map the energy landscape for atom manipulation, identifying viable pathways.

However, DFT is computationally expensive. This is where **Machine Learning (ML)** is making a transformative impact. ML potential models, trained on DFT data, can achieve near-DFT accuracy with a fraction of the computational cost, enabling molecular dynamics simulations over longer timescales and larger systems. Furthermore, ML algorithms are being used to:

- **Analyze Experimental Data:** Automatically identify atomic defects in STM or TEM images.
- **Inverse Design:** Given a desired property (e.g., a specific bandgap and magnetic moment), an ML model can search the vast chemical space to propose candidate atomic structures.
- **Automate Fabrication:** ML controllers are being integrated with STMs to autonomously correct for drift, identify target atoms, and execute complex manipulation sequences, moving from manual control to automated atomic construction.

**Table 1.** Comparison of Key Atomic-Scale Fabrication Techniques

| Technique                  | Typical Resolution               | Key Advantages                                                                  | Key Limitations                                                                                                         | Primary Applications                                                    |
|----------------------------|----------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| <b>STM Manipulation</b>    | Single Atom                      | Highest precision, real-space imaging & feedback, versatile manipulation modes. | Requires ultra-high vacuum & low temps, slow, limited to conductive surfaces.                                           | Quantum corrals, atomic logic, single-atom devices.                     |
| <b>TEM/STEM Patterning</b> | Single Atom (for light elements) | Real-time imaging during fabrication, works on insulators & 2D materials.       | High-energy beam can induce damage, requires very thin samples, complex instrumentation.                                | Defect engineering in 2D materials, nanoscale pores for DNA sequencing. |
| <b>DNA Origami</b>         | ~5 nm                            | Parallel mass production, complex 3D shapes, works in solution, biocompatible.  | Limited stability in some conditions, lower absolute precision, incorporation of non-bio components can be challenging. | Plasmonics, drug delivery, templating, single-molecule studies.         |

Table 1 compares three atomic/nanoscale fabrication techniques, telling you: (1) The typical resolution they can achieve (2) Their key advantages (3) Their key limitations (4) Their suitable primary applications. This table helps you compare three technologies: STM manipulation, TEM/STEM writing, and DNA origami. It clarifies their differences in resolution, advantages, disadvantages, and application scenarios, making it easier for you to explain "which technology is suitable for what and why" when writing reports or doing projects.

## 6. Challenges and Future Perspectives

Despite the breathtaking progress, the path from laboratory marvel to widespread technology is fraught with challenges.

- **The Scalability Problem:** The serial nature of SPM and TEM manipulation is intrinsically slow. Building a complex structure with thousands of atoms can take days. Future progress depends on developing parallel probe arrays or combining bottom-up self-assembly with top-down precision to create hierarchical structures.
- **Stability and Reliability:** Atomic-scale structures are often stable only at cryogenic temperatures and in ultra-high vacuum. Thermal vibrations and chemical reactions can destroy them at room temperature. Discovering new material systems (e.g., more robust 2D materials or 3D covalent networks) that offer atomic precision with inherent stability is a major research thrust.
- **Interconnect and Integration:** How does one connect a single-atom transistor to the macroscopic world? Creating atomic-scale wires and leads that do not dominate the device behavior remains a significant hurdle. Furthermore, integrating these devices with conventional silicon technology is a non-trivial task.
- **Metrology and Characterization:** As devices shrink to the atomic scale, characterizing their performance becomes increasingly difficult. New methods are needed to probe electrical, thermal, and mechanical properties at this ultimate limit.

Looking forward, the convergence of the techniques discussed here will likely define the next decade. We will see hybrid approaches where DNA origami templates are used to pre-assemble components that are then finalized with STM, all guided by ML-optimized designs running on powerful quantum-classical computational workflows. The goal is a fully integrated "atomic foundry"-a facility where a designer can input a desired device function and receive a physically realized atomic-scale structure.

## 7. Conclusion

Nanoengineering has crossed a fundamental threshold. We are no longer passive observers of the atomic world but active architects within it. The ability to construct functional devices from atomic-level blueprints marks a seminal achievement in human ingenuity, turning Feynman's visionary "room at the bottom" into a bustling workshop. The tools-scanning probes, electron beams, and molecular scaffolds-are in our hands. The building blocks-2D materials, single atoms, and molecules-are on the bench. We have already constructed proof-of-principle devices that redefine the limits of the possible, from single-atom transistors to deterministic quantum bits.

The journey ahead is challenging, demanding breakthroughs in scalability, stability, and integration. Yet, the trajectory is clear. The deterministic control of matter at its most fundamental level will not only extend the roadmap of information technology but will also enable entirely new capabilities in sensing, energy conversion, and medicine. By embracing this new frontier of atomic-level engineering, we are not just building smaller devices; we are writing the code for the future of matter itself.

## References

- [1] Eigler, D. M., & Schweizer, E. K. (1990). Positioning single atoms with a scanning tunnelling microscope. *Nature*, \*344\*(6266), 524–526. <https://doi.org/10.1038/344524a0>
- [2] Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. *Nature*, \*440\*(7082), 297–302. <https://doi.org/10.1038/nature04586>
- [3] Behler, J., & Parrinello, M. (2007). Generalized neural-network representation of high-dimensional potential-energy surfaces. *Physical Review Letters*, \*98\*(14), 146401. <https://doi.org/10.1103/PhysRevLett.98.146401>
- [4] Otte, A. F., Ternes, M., von Bergmann, K., Loth, S., Brune, H., Lutz, C. P., Hirjibehedin, C. F., & Heinrich, A. J. (2008). The role of magnetic anisotropy in the Kondo effect. *Nature Physics*, \*4\*(11), 847–850. <https://doi.org/10.1038/nphys1072>
- [5] Fuechsle, M., Miwa, J. A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L. C. L., Klimeck, G., & Simmons, M. Y. (2012). A single-atom transistor. *Nature Nanotechnology*, \*7\*(4), 242–246. <https://doi.org/10.1038/nnano.2012.21>
- [6] Mohn, F., Gross, L., Moll, N., & Meyer, G. (2012). Imaging the charge distribution within a single molecule. *Nature Nanotechnology*, \*7\*(4), 227–231. <https://doi.org/10.1038/nnano.2012.20>
- [7] Zwanenburg, F. A., Dzurak, A. S., Morello, A., Simmons, M. Y., Hollenberg, L. C. L., Klimeck, G., Rogge, S., Coppersmith, S. N., & Eriksson, M. A. (2013). Silicon quantum electronics. *Reviews of Modern Physics*, \*85\*(3), 961–1019. <https://doi.org/10.1103/RevModPhys.85.961>
- [8] Liljeroth, P., Repp, J., & Meyer, G. (2007). Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. *Science*, \*317\*(5842), 1203–1206. <https://doi.org/10.1126/science.1144366>
- [9] Kalff, F. E., Rebergen, M. P., Fahrenfort, E., Girovsky, J., Toskovic, R., Lado, J. L., Fernández-Rossier, J., & Otte, A. F. (2016). A kilobyte rewritable atomic memory. *Nature Nanotechnology*, \*11\*(11), 926–929. <https://doi.org/10.1038/nnano.2016.131>
- [10] Schröder, T., Trusheim, M. E., Walsh, M., Li, L., Zheng, J., Schukraft, M., Sipahigil, A., Evans, R. E., Sukachev, D. D., & Lukin, M. D. (2017). Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. *Nature Communications*, \*8\*(1), 15376. <https://doi.org/10.1038/ncomms15376>
- [11] Theis, T. N., & Wong, H. S. P. (2017). The end of Moore's law: A new beginning for information technology. *Computing in Science & Engineering*, \*19\*(2), 41–50. <https://doi.org/10.1109/MCSE.2017.29>
- [12] Rashidi, M., & Wolkow, R. A. (2018). Autonomous scanning probe microscopy in-situ tip conditioning through machine learning. *ACS Nano*, \*12\*(6), 5185–5189. <https://doi.org/10.1021/acsnano.8b02208>
- [13] Khajetoorians, A. A., Wegner, D., Otte, A. F., & Brune, H. (2019). Creating designer quantum states of matter atom-by-atom. *Nature Reviews Physics*, \*1\*(12), 703–715. <https://doi.org/10.1038/s42254-019-0108-5>