Spectroscopic Verification and Exclusion of Non-biological Causes of Sulfur-Based Biosignature Gases in Exoplanet Life Detection

Authors

  • Jane Kang San Marino High School, 2701 Huntington Dr, San Marino, CA 91108 USA Author

DOI:

https://doi.org/10.64229/bh0n3y55

Keywords:

Exoplanetary Life Detection, Sulfur-Based Biological Characteristics, Spectral Degeneracy, Non-Biological Exclusion Mechanism, Bayesian Inference

Abstract

Sulfur-based volatile compounds are regarded as a key candidate to break the deadlock of traditional oxygen-methane biological signal detection due to their unique metabolic specificity. However, their spectral signals face the challenge of high degeneracy caused by geological and photochemical origins. To address this core bottleneck, this paper proposes a systematic detection framework based on the "exclusion-verification" dual mechanism. Firstly, a flux threshold model for volcanic degassing and non-biological synthesis pathways was established, systematically defining the physical and chemical boundaries of non-biological causes, secondly, a high-resolution radiative transfer model was used to analyze the spectral fingerprints of key sulfur molecules, proposing an observation strategy for the mid-infrared window region to counteract the shading effect and a ground-based high-dispersion cross-correlation verification scheme, finally, a context-dependent Bayesian inference framework was constructed, achieving a logical loop from spectral feature identification to quantification of biological cause probability through marginal integration of non-biological model parameters. The research provides a robust theoretical criterion for the confirmation of exoplanetary life.

References

[1]Garcia-Sage, K., Farrish, A. O., Airapetian, V. S., Alexander, D., Cohen, O., Domagal-Goldman, S., ... & Rau, G. (2023). Star-exoplanet interactions: A growing interdisciplinary field in heliophysics. Frontiers in Astronomy and Space Sciences, 10, 1064076. DOI: 10.3389/fspas.2023.1064076

[2]Impey, C. (2022). Life beyond Earth: How will it first be detected?. Acta Astronautica, 197, 387-398.

[3]Papkovsky, D. B., & Dmitriev, R. I. (2013). Biological detection by optical oxygen sensing. Chemical Society Reviews, 42(22), 8700-8732. DOI: 10.1039/c3cs60131e

[4]Ramirez, R. M. (2018). A more comprehensive habitable zone for finding life on other planets. Geosciences, 8(8), 280. DOI: 10.3390/geosciences8080280

[5]Kilgour, D. B., Novak, G. A., Sauer, J. S., Moore, A. N., Dinasquet, J., Amiri, S., ... & Bertram, T. H. (2022). Marine gas-phase sulfur emissions during an induced phytoplankton bloom. Atmospheric Chemistry and Physics, 22(2), 1601-1613. DOI: 10.5194/acp-22-1601-2022

[6]Canfield, D. E., & Raiswell, R. (1999). The evolution of the sulfur cycle. American Journal of Science, 299(7-9), 697-723. DOI: 10.2475/ajs.299.7-9.697

[7]Tinetti, G., Meadows, V. S., Crisp, D., Kiang, N. Y., Kahn, B. H., Bosc, E., ... & Turnbull, M. (2006). Detectability of planetary characteristics in disk-averaged spectra II: Synthetic spectra and light-curves of earth. Astrobiology, 6(6), 881-900. DOI: 10.1089/ast.2006.6.881

[8]Li, X., Lu, B., Wang, L., Xue, J., Zhu, B., Trabelsi, T., ... & Zeng, X. (2022). Unraveling sulfur chemistry in interstellar carbon oxide ices. Nature Communications, 13(1), 7150. DOI: 10.1038/s41467-022-34949-4

[9]Ng, P. H. R., Walker, S., Tahtouh, M., & Reedy, B. (2009). Detection of illicit substances in fingerprints by infrared spectral imaging. Analytical and bioanalytical chemistry, 394(8), 2039-2048. DOI: 10.1007/s00216-009-2806-9

[10]Manley, M. (2014). Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. Chemical Society Reviews, 43(24), 8200-8214. DOI: 10.1039/c4cs00062e

[11]Rückert, C. (2016). Sulfate reduction in microorganisms—recent advances and biotechnological applications. Current opinion in microbiology, 33, 140-146. DOI: 10.1016/j.mib.2016.07.007

[12]Startsev, A. N. The key role of catalysts in the process of low temperature decomposition of hydrogen sulfide: non-equilibrium thermodynamics of open system. DOI: 10.13140/RG.2.2.28119.21921

[13]Huxtable, R. J. (2013). Biochemistry of sulfur (Vol. 6). Springer Science & Business Media.

[14]Ackerman, S. A. (1997). Remote sensing aerosols using satellite infrared observations. Journal of Geophysical Research: Atmospheres, 102(D14), 17069-17079.

[15]Gaillard, F., & Scaillet, B. (2014). A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth and Planetary Science Letters, 403, 307-316. DOI: 10.1016/j.epsl.2014.07.009

[16]Stefánsson, A., Arnórsson, S., Gunnarsson, I., Kaasalainen, H., & Gunnlaugsson, E. (2011). The geochemistry and sequestration of H2S into the geothermal system at Hellisheidi, Iceland. Journal of Volcanology and Geothermal Research, 202(3-4), 179-188. DOI: 10.1016/j.jvolgeores.2010.12.014

Downloads

Published

2026-01-20

Issue

Section

Articles

How to Cite

Jane Kang. (2026). Spectroscopic Verification and Exclusion of Non-biological Causes of Sulfur-Based Biosignature Gases in Exoplanet Life Detection. Integrative Science Advances, 1(2), 20-26. https://doi.org/10.64229/bh0n3y55