The New Frontier of Nanoengineering, an Atomic-Level Blueprints for Future Devices
DOI:
https://doi.org/10.64229/37gky037Keywords:
Atomic-Scale Fabrication, Scanning Probe Microscopy, Single-Atom Transistor, Quantum Computing, Molecular Machines, Dna Origami, Density Functional TheoryAbstract
The field of nanoengineering is undergoing a paradigm shift, moving from top-down fabrication and self-assembly towards the precise, deterministic construction of functional structures atom-by-atom. This new frontier, often termed "atomic-level engineering" or "matter programming," is made possible by revolutionary advances in scanning probe microscopy, electron-beam manipulation, and computational materials design. This article comprehensively reviews the state-of-the-art techniques that constitute this new toolkit, including scanning tunnelling microscope (STM) atom manipulation, transmission electron microscope (TEM)-based atomic fabrication, and DNA origami as a scaffold for precise nanoparticle placement. We explore the application of these atomic blueprints in creating next-generation electronic devices, such as single-atom transistors and atomic-scale quantum bits (qubits), which promise to extend Moore's Law beyond the limits of conventional silicon technology. Furthermore, we discuss the emergence of bespoke molecular machines and sensors with functionalities encoded directly into their atomic architecture. The critical role of advanced computational methods-from density functional theory (DFT) to machine learning-in predicting properties, guiding synthesis, and automating the design process is emphasized. Despite the profound promise, significant challenges remain, including scalability, stability, and integration with existing macro-scale systems. This review concludes by outlining the future trajectory of atomic-level nanoengineering, arguing that the ability to construct matter from its fundamental building blocks will ultimately usher in a new era of materials science and device technology, with transformative implications for computing, energy, and medicine.
References
[1]Eigler, D. M., & Schweizer, E. K. (1990). Positioning single atoms with a scanning tunnelling microscope. Nature, *344*(6266), 524–526. https://doi.org/10.1038/344524a0
[2]Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, *440*(7082), 297–302. https://doi.org/10.1038/nature04586
[3]Behler, J., & Parrinello, M. (2007). Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical Review Letters, *98*(14), 146401. https://doi.org/10.1103/PhysRevLett.98.146401
[4]Otte, A. F., Ternes, M., von Bergmann, K., Loth, S., Brune, H., Lutz, C. P., Hirjibehedin, C. F., & Heinrich, A. J. (2008). The role of magnetic anisotropy in the Kondo effect. Nature Physics, *4*(11), 847–850. https://doi.org/10.1038/nphys1072
[5]Fuechsle, M., Miwa, J. A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L. C. L., Klimeck, G., & Simmons, M. Y. (2012). A single-atom transistor. Nature Nanotechnology, *7*(4), 242–246. https://doi.org/10.1038/nnano.2012.21
[6]Mohn, F., Gross, L., Moll, N., & Meyer, G. (2012). Imaging the charge distribution within a single molecule. Nature Nanotechnology, *7*(4), 227–231. https://doi.org/10.1038/nnano.2012.20
[7]Zwanenburg, F. A., Dzurak, A. S., Morello, A., Simmons, M. Y., Hollenberg, L. C. L., Klimeck, G., Rogge, S., Coppersmith, S. N., & Eriksson, M. A. (2013). Silicon quantum electronics. Reviews of Modern Physics, *85*(3), 961–1019. https://doi.org/10.1103/RevModPhys.85.961
[8]Liljeroth, P., Repp, J., & Meyer, G. (2007). Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science, *317*(5842), 1203–1206. https://doi.org/10.1126/science.1144366
[9]Kalff, F. E., Rebergen, M. P., Fahrenfort, E., Girovsky, J., Toskovic, R., Lado, J. L., Fernández-Rossier, J., & Otte, A. F. (2016). A kilobyte rewritable atomic memory. Nature Nanotechnology, *11*(11), 926–929. https://doi.org/10.1038/nnano.2016.131
[10]Schröder, T., Trusheim, M. E., Walsh, M., Li, L., Zheng, J., Schukraft, M., Sipahigil, A., Evans, R. E., Sukachev, D. D., & Lukin, M. D. (2017). Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nature Communications, *8*(1), 15376. https://doi.org/10.1038/ncomms15376
[11]Theis, T. N., & Wong, H. S. P. (2017). The end of Moore’s law: A new beginning for information technology. Computing in Science & Engineering, *19*(2), 41–50. https://doi.org/10.1109/MCSE.2017.29
[12]Rashidi, M., & Wolkow, R. A. (2018). Autonomous scanning probe microscopy in-situ tip conditioning through machine learning. ACS Nano, *12*(6), 5185–5189. https://doi.org/10.1021/acsnano.8b02208
[13]Khajetoorians, A. A., Wegner, D., Otte, A. F., & Brune, H. (2019). Creating designer quantum states of matter atom-by-atom. Nature Reviews Physics, *1*(12), 703–715. https://doi.org/10.1038/s42254-019-0108-5
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Chiam Jun Keat (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.